JASON Learning’s energy curriculum is aligned to Next Generation Science Standards (NGSS), Common Core and individual state science standards. JASON’s NGSS Task Force, based in Rhode Island and comprised of administrators and classroom teachers, created this table to describe the alignments to NGSS. Performance Expectations, Disciplinary Core Ideas, Crosscutting Concepts, and Science and Engineering Practices supported by the chapter readings, labs, and field assignments for each expedition are included here for grades 5-12. This table does not include alignments to elementary school levels though they may be present. Alignments to Common Core, and state and local standards are searchable from within the JASON Mission Center (JMC). The Digital Library in the JMC includes more detailed alignments of individual resources (articles, images, videos, labs, field assignments, and digital simulations) to these standards.

* (Asterisk): The lab activity or field assignment engages students in three-dimensional learning as presented in *A Framework for K-12 Science Education* (National Research Council, 2012), and prepares students to reach associated performance expectations by the end of the grade or grade bands. Readings deepen and support student understanding of core ideas, crosscutting concepts, and science and engineering practices.

E (Extension): The lab activity or field assignment provides the opportunity to prepare students to reach associated performance expectations and develop core ideas, cross-cutting concepts and science & engineering practices by extending the existing lesson as suggested in the teaching tips section (teacher’s edition) or through simple modification.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Readings</td>
<td>Lab 1: Energetics Survey Lab</td>
<td>Lab 1: Wave Energy Survey Lab</td>
<td>Lab 1: Water Power</td>
<td>Lab 1: Comming Off</td>
</tr>
<tr>
<td>Lab 2: Changes in Potential</td>
<td>Lab 2: Wholesale Changes in Potential</td>
<td>Lab 2: Generating Hydrogen Gas</td>
<td>Lab 2: Using the Sun’s Power</td>
<td></td>
</tr>
</tbody>
</table>

Performance Expectations

MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.

MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.

MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

MS-PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object.

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.
<table>
<thead>
<tr>
<th>Mission 1</th>
<th>Mission 2</th>
<th>Mission 3</th>
<th>Mission 4</th>
<th>Mission 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Current</td>
<td>Waves of Changes</td>
<td>Power to the People</td>
<td>Energy Independence</td>
<td>Power to the People</td>
</tr>
</tbody>
</table>

Chapter Readings

- Lab 1: Energy Survey Lab
- Lab 2: Changes in Potential
- Lab 3: Exploring Visible Light
- Lab 4: Detecting Ultraviolet Radiation
- Lab 5: Exploring Energy

Field Assignments

- Exploring Energy

Chapter Readings

- Lab 1: Energy Transfers & Transformations
- Lab 2: Wave Tank Tsunami
- Lab 3: Thermal Energy Survey Lab
- Lab 4: Electrochemical Cells
- Lab 5: Exploring Transfers & Transformations

Field Assignments

- Exploring Transfers & Transformations

Chapter Readings

- Lab 1: Exploring Magnetism
- Lab 2: Series and Parallel Circuits
- Lab 3: Generating Electricity
- Lab 4: Water Wheel
- Lab 5: Don't Leave Footprints

Field Assignments

- Exploring Transfers & Transformations

Chapter Readings

- Lab 1: Wind Power
- Lab 2: Generating Hydrogen Gas
- Lab 3: Biofuels: Into the Woods
- Lab 4: Biofuels: Into the Lab
- Lab 5: Enzymes are Key

Field Assignments

- Enzymes are Key

Chapter Readings

- Lab 1: Cooling Off
- Lab 2: Making Models
- Lab 3: Using the Sun's Power
- Lab 4: Communicating with Graphics
- Lab 5: Commencing Countdown

Field Assignments

- Communicating with Graphics

MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth’s mineral, energy, and groundwater resources are the result of past and current geoscience processes.

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing human impact on the environment.

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth’s systems.
<table>
<thead>
<tr>
<th>Mission 1</th>
<th>Mission 2</th>
<th>Mission 3</th>
<th>Mission 4</th>
<th>Mission 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Current</td>
<td>Waves of Changes</td>
<td>Power to the People</td>
<td>Energy Independence</td>
<td>Power to the People</td>
</tr>
<tr>
<td>Chapter Readings</td>
<td>Lab 1: Survey Lab</td>
<td>Lab 1</td>
<td>Lab 1</td>
<td>Lab 1</td>
</tr>
<tr>
<td>Lab 2</td>
<td>Lab 2</td>
<td>Lab 2</td>
<td>Lab 2</td>
<td>Lab 2</td>
</tr>
<tr>
<td>Lab 3</td>
<td>Lab 3</td>
<td>Lab 3</td>
<td>Lab 3</td>
<td>Lab 3</td>
</tr>
<tr>
<td>Lab 4</td>
<td>Lab 4</td>
<td>Lab 4</td>
<td>Lab 4</td>
<td>Lab 4</td>
</tr>
</tbody>
</table>

MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions.

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success.

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that optimal design can be achieved.

MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism.

HS-PS2-5. Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.
Disciplinary Core Ideas

PS1.A Structure and Properties of Matter
- E

PS1.B Chemical Reactions
- E

PS2.B Types of Interactions
- E

PS3.A Definitions of Energy
- E

PS3.B Conservation of Energy and Energy Transfer
- E

PS3.C Relationship Between Energy and Forces
- E

PS3.D Energy in Chemical Processes
- E

Mission 1: Critical Current
- Chapter Readings
- Lab 1: Survey Lab
- Lab 2: Changes in Potential
- Lab 3: Evolving Visible Light
- Lab 4: Evolving Energy

Mission 2: Waves of Changes
- Chapter Readings
- Lab 1: Survey Lab
- Lab 2: Changes in Potential
- Lab 3: Evolving Visible Light
- Lab 4: Evolving Energy

Mission 3: Power to the People
- Chapter Readings
- Lab 1: Generating Electricity
- Lab 2: Detecting Ultraviolet Radiation
- Lab 3: Exploring Visible Light
- Lab 4: Exploring Energy

Mission 4: Energy Independence
- Chapter Readings
- Lab 1: Generating Electricity
- Lab 2: Detecting Ultraviolet Radiation
- Lab 3: Exploring Visible Light
- Lab 4: Exploring Energy

Mission 5: Power to the People
- Chapter Readings
- Lab 1: Generating Electricity
- Lab 2: Detecting Ultraviolet Radiation
- Lab 3: Exploring Visible Light
- Lab 4: Exploring Energy

HS-PS3-4. Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (2nd Law of Thermodynamics).

HS-PS3-5. Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

HS-ESS3-2. Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost benefit ratios.

HS-ESS3-4. Evaluate or refine a technological solution that reduces the impacts of human activities on natural systems.

HS-ETS1-1. Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-ETS1-2. Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.
Chapter Readings

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Lab 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Survey Lab</td>
<td>Wave Energy Survey Lab</td>
<td>Waves & Transformations Lab</td>
<td>Exploring Energy Lab</td>
<td>Exploring Energy Lab</td>
</tr>
</tbody>
</table>

Lab Readings

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Lab 2</th>
<th>Lab 3</th>
<th>Lab 4</th>
<th>Field Assignment</th>
</tr>
</thead>
</table>

Crosscutting Concepts

<table>
<thead>
<tr>
<th>Patterns</th>
<th>Cause and Effect</th>
<th>Scale, Proportion, and Quantity</th>
<th>Systems and System Models</th>
<th>Energy and Matter</th>
<th>Structure and Function</th>
<th>Stability and Change</th>
<th>Science and Engineering Practices</th>
</tr>
</thead>
</table>

Science and Engineering Practices

<table>
<thead>
<tr>
<th>Asking Questions and Defining Problems</th>
<th>Developing and Using Models</th>
<th>Planning and Carrying Out Investigations</th>
<th>Analyzing and Interpreting Data</th>
</tr>
</thead>
</table>

Standards

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td>E</td>
<td>*</td>
<td>E</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Mission 1</td>
<td>Mission 2</td>
<td>Mission 3</td>
<td>Mission 4</td>
<td>Mission 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Current</td>
<td>Waves of Changes</td>
<td>Power to the People</td>
<td>Energy Independence</td>
<td>Power to the People</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chapter Readings</td>
<td>Field Assignment</td>
<td>Lab 1 Survey Lab</td>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 1 Field Assignment</td>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 1 Field Assignment</td>
</tr>
<tr>
<td>Lab 1 Survey Lab</td>
<td>Energy Survey Lab</td>
<td>Changes in Potential</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 2</td>
<td>Lab 1 Field Assignment</td>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 1 Field Assignment</td>
</tr>
<tr>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 2</td>
<td>Lab 3</td>
<td>Lab 4</td>
<td>Lab 2</td>
<td>Lab 3</td>
</tr>
</tbody>
</table>

Using Mathematics and Computational Thinking

Constructing Explanations and Designing Solutions

Engaging in Argument from Evidence

Obtaining, Evaluating, and Communicating Information